Immune Centroids Over-Sampling Method for Multi-Class Classification

نویسندگان

  • Xusheng Ai
  • Jian Wu
  • Victor S. Sheng
  • Pengpeng Zhao
  • Yufeng Yao
  • Zhiming Cui
چکیده

To improve the classification performance of imbalanced learning, a novel over-sampling method, Global Immune Centroids OverSampling (Global-IC) based on an immune network, is proposed. GlobalIC generates a set of representative immune centroids to broaden the decision regions of small class spaces. The representative immune centroids are regarded as synthetic examples in order to resolve the imbalance problem. We utilize an artificial immune network to generate synthetic examples on clusters with high data densities. This approach addresses the problem of synthetic minority oversampling techniques, which lacks of the reflection on groups of training examples. Our comprehensive experimental results show that Global-IC can achieve better performance than renowned multi-class resampling methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering

 Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Extension of the Rocchio Classification Method to Multi-modal Categorization of Documents in Social Media

Most of the approaches in multi-view categorization use early fusion, late fusion or co-training strategies. We propose here a novel classification method that is able to efficiently capture the interactions across the different modes. This method is a multi-modal extension of the Rocchio classification algorithm – very popular in the Information Retrieval community. The extension consists of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015